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Continuous probability distributions from finite data

David M. Schmidt
Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 11 August 1999!

Recent approaches to the problem of inferring a continuous probability distribution from a finite set of data
have used a scalar field theory for the form of the prior probability distribution. This paper presents a more
general form for the prior distribution that has a geometrical interpretation and can improve the specificity of
likely solutions. It is also demonstrated that a numerical sampling of the posterior probability distribution can
be used as an alternative to a histogram for visualization and to make probabilistic inferences from the data.

PACS number~s!: 05.10.2a, 02.50.Wp
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Inferring the continuous probability distribution from
which a finite number of data samples were drawn is
example of an ill-posed inverse problem: there are many
ferent distributions that could have produced the given fin
data. Often one has prior information, separate from the d
themselves, that could be used to reduce or weight the s
of possible solutions. The ability to combine prior inform
tion with that from the data and to produce more inform
results is one reason Bayesian approaches have been us
address a number of ill-posed inverse problems@1#. In the
Bayesian approach a prior probability distribution over t
space of possible solutions is constructed that reflects
prior information. This prior probability distribution is com
bined with the likelihood of the data given any particul
possible solution, using Bayes’s rule of probability, to pr
duce a posterior probability distribution over the space
possible solutions. This posterior distribution encapsula
all the information available, both from the data and from t
prior information, and can be used to make probabilistic
ferences. Although prior information is sometimes cons
ered subjective and its use may be controversial@2#, prior
information is essential in order to reduce the large range
likely solutions associated with ill-posed inverse problem
Indeed, one should tailor the prior distribution to incorpora
all of the pertinent prior information available for each pro
lem in order to maximize the specificity of the resulting po
terior distribution. Even so, the posterior distribution may
broad and the most likely solution may not be representa
of the full range of likely solutions. In such cases it is im
portant to consider the full range of likely solutions wh
making inferences.

For the problem of inferring the continuous distributio
from which a finite number of data have been drawn, a nu
ber of recent articles have described the utility of using
particular form for the prior distribution that may be viewe
in field-theoretic terms and is designed to favor ‘‘smoot
distributions by penalizing large gradients@3–5#. The present
paper describes a generalization of this prior distribution t
can incorporate a wider range of prior information and ha
geometrical interpretation that aids in understanding its pr
erties. A number of examples are presented that illust
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how both of these features can be useful for generating m
informed results. This paper concludes by demonstra
how a numerical sampling of the posterior can be used
displaying results~as an alternative to the histogram! and for
making probabilistic inferences.

Let P@Qux1 , . . . ,xN# denote the posterior probability tha
the target distributionQ(x) describes the datax1 , . . . ,xN .
By Bayes’s rule,

P@Qux1 , . . . ,xN#5
P@x1 , . . . ,xNuQ#P@Q#

P@x1 , . . . ,xN#
~1!

5
Q~x1!•••Q~xN!P@Q#

E DQQ~x1!•••Q~xN!P@Q#

, ~2!

whereP@Q# is the prior probability of the target distributio
Q. By settingQ(x)5c2(x) @6#, wherec may take any value
in (2`,`), we may insure thatQ is non-negative.c is
referred to as theamplitudeby analogy with quantum me
chanics@4#.

A particular form forP@Q#, or ratherP@c#, that has been
presented in order to, the authors say, incorporate a bias
Q be ‘‘smooth’’ is @4,3,5#

P@c#5
1

Z
expF2E dx

l 2

2
~]xc!2GdS 12E dxc2D , ~3!

whereZ is the normalization factor andl is a constant that
controls the penalty applied to gradients. Thed function en-
forces normalization of the distributionQ. While Eq.~3! may
be viewed as defining a scalar field theory@3# it may also be
viewed in more traditional statistical terms. After integratin
by parts and using standard quantum mechanics notation
~3! becomes

P@c#5
1

Z
expF2

1

2
^cuV21uc&Gd~12^cuc&!, ~4!

whereV52l 2]x
2 is a positive, symmetric~Hermitian! op-

erator within the Hilbert space forc. This prior distribution
1052 ©2000 The American Physical Society
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is recognized as a generalization of a multidimensio
Gaussian distribution withV acting as the covariance oper
tor. Continuing this analogy, we write

V~x,y!5s~x!s~y!r~x,y! ~5!

where s2(x) is the variance atx and r is the correlation
function. Information about smoothness is encoded in
correlation function. For example, if the distribution fro
which the $xi% were drawn is expected to be smooth ov
distances smaller than a certain spatial scale then the c
lation function should be near unity over distances sma
than this scale. The prior distribution used in@3,4# @Eq. ~3!#
uses one particular form for the covariance operatorV
52l 2]x

2). Equation~4! allows for many other forms of the
covariance operator and thus is a generalized form for
prior distribution that can be used to better encode whate
prior information is available for the particular problem
hand.

A useful feature of this prior probability distribution i
that it can be viewed in geometrical terms. The eigenfu
tions of the operatorV form a basis for the space ofc. The
normalization constraint restrictsc to lie on a hyperspherica
surface of radius one. Those eigenfunctions with larger
genvalues are more likely,a priori. If V has any eigenvalue
that are zero then the corresponding eigenfunctions for
basis for a subspace that is, orthogonal toc; that is the prior
distribution preventsc from having any components alon
these eigenfunctions. As will be demonstrated, this geom
cal interpretation is useful for estimating the effects that d
ferent choices forV will have on the resulting solutions.

With this form for the prior distribution@Eq. ~4!# the
probability P@Qux1 , . . . ,xN# of a distributionQ given the
data is

P@cux1 , . . . ,xN#}c2~x1!•••c2~xN!

3expF2
1

2
^cuV21uc&Gd~12^cuc&!

~6!

5e2S[c]d~12^cuc&!, ~7!

FIG. 1. The most likely distributions from an inverse Laplaci
prior distribution with l 56 and fromN520 ~dotted line! and N
51000 ~dashed line! data drawn randomly from a target distribu
tion consisting of the sum of two normal distributions~solid curve!.
l

e

r
re-
r

e
er

-

i-

a

ri-
-

where the effective actionS is

S@c#5
1

2
^cuV21uc&22(

i
ln~^xi uc&!. ~8!

The most likely distribution given the data is that functio
ccl which minimizes the effective action subject to the no
malization constraint. To enforce this constraint a Lagran
multiplier terml(12^cuc&)/2 is subtracted from the action
Variational methods then lead to the following equations
ccl andl:

uccl&52(
i

~V211lI !21uxi&

^xi uccl&
, ~9a!

^ccluccl&51. ~9b!

The solution to these equations may be written

uccl&5(
i

aiU~l!uxi&, ~10!

whereU(l)5(V211lI )21. Equations~9! imply

ai(
j

aj^xi uU~l!uxj&52, i 51, . . . ,N, ~11a!

(
i , j

aiaj^xi uU2~l!uxj&51. ~11b!

TheseN11 nonlinear equations determinel and theai and
may be solved using Newton’s method@4#.

The covariance operatorV in the prior distribution should
be chosen to reflect the prior information that one has av
able. A few examples with three different forms forV are
described below in order to illustrate the effects that differ
choices ofV can have on the resulting most likely distribu
tions. First consider the case used in@4,3# in which the prior
covariance operator is an inverse Laplacian in one dim
sion, V2152l 2]x

2 . Here l is assumed to be known. If its
value is uncertain then in the Bayesian framework, a pr

FIG. 2. The most likely distributions from a sinc function prio
distribution with k053.33 and from the sameN520 ~dotted line!
and N51000 ~dashed line! data used for the examples in Fig.
which were drawn randomly from a target distribution consisting
the sum of two normal distributions~solid curve!.
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1054 PRE 61DAVID M. SCHMIDT
distribution forl that reflects this uncertainty should be co
structed and marginalized or integrated over when calcu
ing the posterior distribution. With this form forV,

U~l!5~2l 2]x
21lI !21, ~12!

which is the Green’s function of the modified Helmhol
equation. The solutions of this equation are well know
even for dimensions larger than one@7#. In particular, in one
dimension the most likely solutionccl(x) is, from Eq.~10!,

ccl~x!5(
i

ai

1

2kl 2
exp~2kux2xi u! ~13!

where k5Al/l . Examples of the most likely probability
distributions for this case withl 56 are shown in Fig. 1. Fo
these examples the data were drawn from a target distr
tion consisting of the sum of two normal distribution
shown as the solid curve in the figure. The most likely d
tributions are not very smooth, despite the fact that they
sult from a prior distribution that was used in order to pr
duce smooth solutions@3,4#. This is a general feature that
not just peculiar to this particular example because, as ca
seen by the form of Eq.~13!, the most likely solutions from
this prior distribution are constructed from functions that
not have continuous derivatives. The following examp
demonstrate different choices ofV that do a better job of
encoding prior information about smoothness.

For the second example, consider the case in which
prior covariance operator has a correlation function which
a Gaussian,

V~x,y;r !5s2 expF2~x2y!2

2r 2 G . ~14!

Heres2 is the prior variance for the magnitude of the targ
probability distribution andr is a correlation scale below
which the target probability distribution is believed to b
smooth. In this case it is useful to expandU in an operator
product expansion inV,

U~l!5V~12lV1l2V•V2l3V•V•V1••• !. ~15!

FIG. 3. The Fourier spectra of the three types of covaria
operators shown in the legend. Free parameters in each case
been set to correspond roughly to a cutoff at wave numberk0

53.33.
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BecauseVN}V(x,y;ANr) for this particularV, Eq.~15! gen-
erates a multiresolution expansion, analogous to a wav
expansion, forU and therefore also forccl , consisting of
Gaussians of ever increasing width, with the finest scale
ing represented by the originalV(x,y;r ). This functional
form for V therefore generates a most likely probability d
tribution that has finite derivatives to all orders and is ge
erally more smooth than that from the first example.

For the final example, consider the case in which the p
covariance operator is a projection operator that proje
onto the subspace formed by functions having only Fou
wave numbers smaller than a particular wave numberk0. In
one dimension this covariance operator is the sinc functi

V~x,y;k0!5
sin@k0~x2y!#

p~x2y!
. ~16!

Because this is a projection operator,V•V5V and from Eq.
~15!, U for this case is simplyU(l)5V/(11l). The most
likely amplitude therefore consists of sums of sinc functio
centered at each data point. Examples of the most lik
probability distribution using this prior distribution withk0
53.33 are shown in Fig. 2. The same data used for the
amples in Fig. 1 were used here. Even with only 20 d
points the most likely solution indicates a doubly peak
distribution. Both of the examples here are more smooth t
those generated by the prior distribution discussed abov
the first example and shown in Fig. 1.

It is useful to examine the Fourier spectrum of the pr
covariance operator in order to understand some of the p
erties of the resulting most likely distribution. The Fouri
spectra of the three covariance operators considered in
above examples are shown in Fig. 3. Because of the g
metrical interpretation of the prior distribution@Eq. ~4!# it is
clear that those wave numbers with larger Fourier amplitu
are more likely,a priori. However, in order to maximize the
likelihood of the given data, the most likely amplitude w
tend to consist of the largest possible wave number com
nents. Because the sinc function covariance operator ha
sharpest high wave number cutoff, it will tend to generate
smoothest most likely distribution. Conversely, the inve

e
ave

FIG. 4. Four different samples ofQ(x) drawn from the posterior
distribution for the case in which 200 data points were drawn fr
the double normal target distribution used in the previous exam
and the sinc function covariance operator was used for the p
distribution.
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FIG. 5. Two ways of visualiz-
ing data drawn from a continuou
distribution. ~a! The Bayesian
posterior distribution, represente
by a two-dimensional histogram
of the values ofQ(x) across the
MCMC samples, shown in gray
scale where darker shades indica
a larger number of occurrences
The solid line is the true or targe
distribution.~b! Conventional his-
togram of the same data.
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Laplacian covariance operator will tend to produce the le
smooth most likely distribution.

Although examining most likely solutions is useful fo
illuminating the effects that different prior distributions ca
have, it is the posterior probability distribution over th
space of possible solutions that should be of the most in
est. The posterior distribution summarizes all of the availa
information, both that from the data and that from the pr
information, and is less sensitive to small differences in pr
distributions than is the most likely solution. One way
investigate other likely solutions is to approximate the p
terior distribution by a Gaussian distribution about the m
likely solution, as discussed in@4#. Another way is to nu-
merically generate samples from the posterior distributi
for example using the technique of Markov chain Mon
Carlo ~MCMC! @8#. As an illustration, 104 samples were
generated, using a Metropolis MCMC algorithm@9#, from
the posterior distribution for the case in which 200 da
points were drawn from the double normal target distribut
used in the previous examples and the sinc function cov
ance operator was used for the prior distribution. Figur
e
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shows a few of these sample distributions. The degree
variability among the samples is representative of the un
tainty in the solution, while features that are common acr
a large fraction of the samples are associated with a h
posterior probability. Because these samples are distrib
according to the posterior distribution, the posterior proba
ity of any particular feature can be easily computed by c
culating the fraction of samples possessing that feature.
nally, a convenient way to visualize the posterior distributi
using these samples is to plot the two-dimensional histog
of the values ofQ(x) across the samples, as shown in F
5a. This is a very effective way of conveying the gene
shape and uncertainty ofQ(x), and is more illuminating than
the conventional histogram of the same data, shown in
5b.

I thank C.C. Wood for helpful discussions and for com
ments on the manuscript. This work was supported by L
Alamos National Laboratory, by NCRR/NIH Grant No
RR13630, and by NIDA/NIMH Grant No. DA/MH09972.
ee

-

J.

.

@1# Recent examples include K. Ertl, W. Vonderlinden, V. Dos
and A. Weller, Nucl. Fusion36, 1477~1996!; A. M. Thomp-
son, J. C. Brown, I. J. D. Craig, and C. Fulber, Astron. Ast
phys.265, 278~1992!; D. M. Schmidt, J. S. George, and C. C
Wood, Hum. Brain Mapp.7, 195 ~1999!.

@2# For a discussion of Bayesian and conventional statistics in
physical sciences, see, for example, B. Efron, Am. Stat.40, 1
~1986!; and G. J. Feldman and R. D. Cousins, Phys. Rev. D57,
3873 ~1998!.

@3# W. Bialek, C. G. Callan, and S. P. Strong, Phys. Rev. Lett.77,
4693 ~1996!. These authors use a different, exponential re
tion betweenQ(x) and c(x) „Q(x)}exp@2c(x)#… but the
same prior distribution forc(x) as in the current paper@i.e.,
,

-

e

-

Eq. ~3!#.
@4# T. E. Holy, Phys. Rev. Lett.79, 3545~1997!.
@5# For a reparametrization invariant geometrical formulation, s

V. Periwal, Phys. Rev. Lett.78, 4671~1997!.
@6# I. J. Good and R. A. Gaskins, Biometrika58, 255 ~1971!.
@7# For example, see G. Arfken,Mathematical Methods for Physi

cists ~Academic Press, Orlando, FL, 1985!.
@8# For example, see W. R. Gilks, S. Richardson, and D.

Spiegelhalter,Markov Chain Monte Carlo in Practice~Chap-
man & Hall, London, 1996!.

@9# N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H
Teller, and E. Teller, J. Chem. Phys.21, 1087~1953!.


