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Continuous probability distributions from finite data

David M. Schmidt
Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 11 August 1999

Recent approaches to the problem of inferring a continuous probability distribution from a finite set of data
have used a scalar field theory for the form of the prior probability distribution. This paper presents a more
general form for the prior distribution that has a geometrical interpretation and can improve the specificity of
likely solutions. It is also demonstrated that a numerical sampling of the posterior probability distribution can
be used as an alternative to a histogram for visualization and to make probabilistic inferences from the data.

PACS numbd(s): 05.10—~a, 02.50.Wp

Inferring the continuous probability distribution from how both of these features can be useful for generating more
which a finite number of data samples were drawn is arinformed results. This paper concludes by demonstrating
example of an ill-posed inverse problem: there are many difhow a numerical sampling of the posterior can be used for
ferent distributions that could have produced the given finitedisplaying result¢as an alternative to the histograand for
data. Often one has prior information, separate from the dat&aking probabilistic inferences.
themselves, that could be used to reduce or weight the space Let P[QX1, . .. xy] denote the posterior probability that
of possible solutions. The ability to combine prior informa- the target distributiorQ(x) describes the data, ... Xy.
tion with that from the data and to produce more informedBY Bayes's rule,
results is one reason Bayesian approaches have been used to

P[le re !XN|Q]P[Q]

addres; a number of ill—posed invgrse prople[m]s In the P[Q|Xq, ... Xn]= 5 (1)
Bayesian approach a prior probability distribution over the [X1, . Xn]

space of possible solutions is constructed that reflects the

prior information. This prior probability distribution is com- - Q(x1)- - - QIxnPIQ] 2)
bined with the likelihood of the data given any particular f '

possible solution, using Bayes’s rule of probability, to pro- PQQXy)- - Q(xn)PLQ]

duce a posterior probability distribution over the space of
possible solutions. This posterior distribution encapsulatewhereP[Q] is the prior probability of the target distribution
all the information available, both from the data and from theQ. By settingQ(x) = ¢/*(x) [6], whereys may take any value
prior information, and can be used to make probabilistic in-n (—,*), we may insure thaQ is non-negativey is
ferences. Although prior information is sometimes consid-referred to as themplitudeby analogy with quantum me-
ered subjective and its use may be controverg?dl prior ~ chanics[4].
information is essential in order to reduce the large range of A particular form forP[Q], or ratherP[ 4], that has been
likely solutions associated with ill-posed inverse problemspresented in order to, the authors say, incorporate a bias that
Indeed, one should tailor the prior distribution to incorporateQ be “smooth” is[4,3,5]
all of the pertinent prior information available for each prob- 1 2
lem in order to maximize the specificity of the resulting pos- _ . ‘- 2 . 2
terior distribution. Even so, the posterior distribution may be PLv]= Zex;{ f dx 2 (Ox) }5(1 J' dxyy ) ©
broad and the most likely solution may not be representative
of the full range of likely solutions. In such cases it is im- WhereZ is the normalization factor and is a constant that
portant to consider the full range of likely solutions when controls the penalty applied to gradients. Théunction en-
making inferences. forces normalization of the distributid@. While Eq.(3) may

For the problem of inferring the continuous distribution be viewed as defining a scalar field theg8y it may also be
from which a finite number of data have been drawn, a numviewed in more traditional statistical terms. After integrating
ber of recent articles have described the utility of using &by parts and using standard quantum mechanics notation, Eq.
particular form for the prior distribution that may be viewed (3) becomes
in field-theoretic terms and is designed to favor “smooth”
distributions by penalizing large gradief8-5]. The present
paper describes a generalization of this prior distribution that
can incorporate a wider range of prior information and has a
geometrical interpretation that aids in understanding its propwhere V= — /242 is a positive, symmetri¢Hermitian) op-
erties. A number of examples are presented that illustraterator within the Hilbert space fap. This prior distribution

1 1
PLy]= zexp[ - §<¢|v—1|¢>}5<1—<¢| w, @
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FIG. 1. The most likely distributions from an inverse Laplacian  FIG. 2. The most likely distributions from a sinc function prior
prior distribution with/=6 and fromN=20 (dotted ling and N distribution withky=3.33 and from the sami =20 (dotted ling
=1000 (dashed ling data drawn randomly from a target distribu- and N=1000 (dashed ling data used for the examples in Fig. 1,
tion consisting of the sum of two normal distributiofs®lid curve. which were drawn randomly from a target distribution consisting of

the sum of two normal distributionsolid curve.
is recognized as a generalization of a multidimensional
Gaussian distribution witl acting as the covariance opera- where the effective actio8 is
tor. Continuing this analogy, we write

1
V(x,y)=a(X)a(y)p(X,y) (5) S[l/f]:§<¢|v_l|¢>_22i In({xi|)). )

where 0%(x) is the variance ak and p is the correlation The most likely distribution given the data is that function
function. Information about smoothness is encoded in the, , which minimizes the effective action subject to the nor-
correlation function. For example, if the distribution from majization constraint. To enforce this constraint a Lagrange
which the{x;} were drawn is expected to be smooth overmyitiplier term (1—(y|4))/2 is subtracted from the action.

distances smaller than a certain spatial scale then the corrgyriational methods then lead to the following equations for
lation function should be near unity over distances smallef,  and\:

than this scale. The prior distribution used[814] [Eq. (3)]

uses one particular form for the covariance operatdr ( (V7D 7Y x)
=—/?52). Equation(4) allows for many other forms of the | )= 22 W (93
covariance operator and thus is a generalized form for the
prior distribution that can be used to better encode whatever (Yol he) =1. (9b)
prior information is available for the particular problem at
hand. The solution to these equations may be written
A useful feature of this prior probability distribution is
that it can be viewed in geometrical terms. The eigenfunc- |l/jd>:2i aUM)|x), (10)

tions of the operato¥ form a basis for the space @f. The
normalization constraint restrictsto lie on a hyperspherical
surface of radius one. Those eigenfunctions with larger eiwhereU(\)=(V~'+\I)~*. Equations(9) imply
genvalues are more likelg, priori. If V has any eigenvalues
that are zero then the corresponding eigenfunctions form a 3'2 a(x|UM)|x)y=2, i=1,...N, (119
basis for a subspace that is, orthogonaytdhat is the prior T .
distribution prevents) from having any components along
these eigenfunctions. As will be demonstrated, this geometri- 2 _
cal interpretation is useful for estimating the effects that dif- ,2} a;ay(xi|U*(N)]x;)=1.
ferent choices fol will have on the resulting solutions.
With this form for the prior distribution[Eq. (4)] the  TheseN+ 1 nonlinear equations determineand thea; and
probability P[Q|x4, . .. xy] of a distributionQ given the  may be solved using Newton’s methpt].
data is The covariance operatdfin the prior distribution should
5 5 be chosen to reflect the prior information that one has avail-
PLoflxe, ..o X (X0) - - (%) able. A few examples with three different forms farare
1 described below in order to illustrate the effects that different
Xex;{ — —<¢|v1|¢>} S(1—{ ) choices ofV can have on the resulting most likely distribu-
2 tions. First consider the case used4n3] in which the prior
(6)  covariance operator is an inverse Laplacian in one dimen-
sion,V~1=—/252. Here/ is assumed to be known. If its
=e SWs1—(y|y)), (7)  value is uncertain then in the Bayesian framework, a prior

(11b
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FIG. 3. The Fourier spectra of the three types of covariance FIG. 4. Four different samples @i(x) drawn from the posterior
operators shown in the legend. Free parameters in each case hayetribution for the case in which 200 data points were drawn from
been set to correspond roughly to a cutoff at wave nuniper the double normal target distribution used in the previous examples
=3.33. and the sinc function covariance operator was used for the prior

distribution.
distribution for/” that reflects this uncertainty should be con-
structed and marginalized or integrated over when calculaBecausa/NocV(x,y; /Nr) for this particulatV, Eq.(15) gen-

ing the posterior distribution. With this form for, erates a multiresolution expansion, analogous to a wavelet
5 _1 expansion, forU and therefore also foyy, consisting of
UN)=(=7%+N)"7, (120 Gaussians of ever increasing width, with the finest scale be-

ing represented by the origind(x,y;r). This functional
form for V therefore generates a most likely probability dis-
Mtribution that has finite derivatives to all orders and is gen-
erally more smooth than that from the first example.

For the final example, consider the case in which the prior
covariance operator is a projection operator that projects
Pa(X)= z ai——exp( —k|[x—Xx|) (13  onto the subspace formed by functions having only Fourier

2k/? wave numbers smaller than a particular wave nunigein
one dimension this covariance operator is the sinc function,

which is the Green’s function of the modified Helmholtz
equation. The solutions of this equation are well known
even for dimensions larger than of. In particular, in one
dimension the most likely solutiorry(x) is, from Eq.(10),

where k= \\//. Examples of the most likely probability
distributions for this case with'=6 are shown in Fig. 1. For _ sin Ko(x—Y)]
these examples the data were drawn from a target distribu- V(x,y;ko) = m(x—y) (16)
tion consisting of the sum of two normal distributions,
shown as the solid curve in the figure. The most likely dis-Because this is a projection operater,V=V and from Eq.
tributions are not very smooth, despite the fact that they re¢15), U for this case is simpiyJ(\)=V/(1+\). The most
sult from a prior distribution that was used in order to pro-likely amplitude therefore consists of sums of sinc functions
duce smooth solutions,4]. This is a general feature that is centered at each data point. Examples of the most likely
not just peculiar to this particular example because, as can hgobability distribution using this prior distribution witkyg
seen by the form of Eq13), the most likely solutions from =3.33 are shown in Fig. 2. The same data used for the ex-
this prior distribution are constructed from functions that doamples in Fig. 1 were used here. Even with only 20 data
not have continuous derivatives. The following examplespoints the most likely solution indicates a doubly peaked
demonstrate different choices df that do a better job of distribution. Both of the examples here are more smooth than
encoding prior information about smoothness. those generated by the prior distribution discussed above in
For the second example, consider the case in which ththe first example and shown in Fig. 1.
prior covariance operator has a correlation function which is It is useful to examine the Fourier spectrum of the prior
a Gaussian, covariance operator in order to understand some of the prop-
erties of the resulting most likely distribution. The Fourier
spectra of the three covariance operators considered in the
above examples are shown in Fig. 3. Because of the geo-
metrical interpretation of the prior distributidiEq. (4)] it is
Here o is the prior variance for the magnitude of the targetclear that those wave numbers with larger Fourier amplitudes
probability distribution andr is a correlation scale below are more likelya priori. However, in order to maximize the
which the target probability distribution is believed to be likelihood of the given data, the most likely amplitude will
smooth. In this case it is useful to expabldin an operator tend to consist of the largest possible wave number compo-
product expansion iV, nents. Because the sinc function covariance operator has the
sharpest high wave number cutoff, it will tend to generate the
UN)=V(1-AV+A?V-V=A3V.V.V+...). (15  smoothest most likely distribution. Conversely, the inverse

—(x—y)?

V(X,y;r)=c? ex;{T (14)
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Laplacian covariance operator will tend to produce the leasshows a few of these sample distributions. The degree of
smooth most likely distribution. variability among the samples is representative of the uncer-
Although examining most likely solutions is useful for tainty in the solution, while features that are common across
illuminating the effects that different prior distributions can a large fraction of the samples are associated with a high
have, it is the posterior probability distribution over the posterior probability. Because these samples are distributed
space of possible solutions that should be of the most interzccording to the posterior distribution, the posterior probabil-
est. The posterior distribution summarizes all of the availablgty of any particular feature can be easily computed by cal-
information, both that from the data and that from the prioreyjating the fraction of samples possessing that feature. Fi-
information, and is less sensitive to small differences in PriOfhally, a convenient way to visualize the posterior distribution

distributions than is the most likely solution. One way to using these samples is to plot the two-dimensional histogram

investigate other likely solutions is to approximate the pos- fth P
: T, . S val X r h mpl hown in Fig.
terior distribution by a Gaussian distribution about the mo of the values 0Q(x) across the samples, as sho 9

likely solution, as discussed if]. Another way is to nu- S%a. This is a very effective way of conveying the general
; ! ' ; . Shape and uncertaint x), and is more illuminating than

merically generate samples f_rom the posterior d|§tr|but|onthe Féonventional histg Qr:a(lm) of the same data shovgn in Fi

for example using the technique of Markov chain Monte 9 ' 9.

Carlo (MCMC) [8]. As an illustration, 1 samples were 5b.

generated, using a Metropolis MCMC algorithi@], from | thank C.C. Wood for helpful discussions and for com-
the pOSteriOI’ diStributiOH fOI’ the case in Wh|Ch 200 dataments on the manuscript_ Th|s Work was Supported by Los
points were drawn from the double normal target distributionalamos National Laboratory, by NCRR/NIH Grant No.

used in the previous examples and the sinc function covariRr13630. and by NIDA/NIMH Grant No. DA/MH09972.
ance operator was used for the prior distribution. Figure 4 '
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